Database
REAL AND COMPLEX NUMBERS
Real and complex numbers - basic operations
Subtraction
df-sub
Metamath Proof Explorer
Description: Define subtraction. Theorem subval shows its value (and describes how
this definition works), Theorem subaddi relates it to addition, and
Theorems subcli and resubcli prove its closure laws. (Contributed by NM , 26-Nov-1994)
Ref
Expression
Assertion
df-sub
⊢ − = x ∈ ℂ , y ∈ ℂ ⟼ ι z ∈ ℂ | y + z = x
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmin
class −
1
vx
setvar x
2
cc
class ℂ
3
vy
setvar y
4
vz
setvar z
5
3
cv
setvar y
6
caddc
class +
7
4
cv
setvar z
8
5 7 6
co
class y + z
9
1
cv
setvar x
10
8 9
wceq
wff y + z = x
11
10 4 2
crio
class ι z ∈ ℂ | y + z = x
12
1 3 2 2 11
cmpo
class x ∈ ℂ , y ∈ ℂ ⟼ ι z ∈ ℂ | y + z = x
13
0 12
wceq
wff − = x ∈ ℂ , y ∈ ℂ ⟼ ι z ∈ ℂ | y + z = x