| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  2  ∈  ℂ ) | 
						
							| 3 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 4 | 3 | a1i | ⊢ ( 𝑘  ∈  ℕ  →  2  ≠  0 ) | 
						
							| 5 |  | nnz | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℤ ) | 
						
							| 6 | 2 4 5 | exprecd | ⊢ ( 𝑘  ∈  ℕ  →  ( ( 1  /  2 ) ↑ 𝑘 )  =  ( 1  /  ( 2 ↑ 𝑘 ) ) ) | 
						
							| 7 | 6 | sumeq2i | ⊢ Σ 𝑘  ∈  ℕ ( ( 1  /  2 ) ↑ 𝑘 )  =  Σ 𝑘  ∈  ℕ ( 1  /  ( 2 ↑ 𝑘 ) ) | 
						
							| 8 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 9 |  | halfre | ⊢ ( 1  /  2 )  ∈  ℝ | 
						
							| 10 |  | halfge0 | ⊢ 0  ≤  ( 1  /  2 ) | 
						
							| 11 |  | absid | ⊢ ( ( ( 1  /  2 )  ∈  ℝ  ∧  0  ≤  ( 1  /  2 ) )  →  ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 ) ) | 
						
							| 12 | 9 10 11 | mp2an | ⊢ ( abs ‘ ( 1  /  2 ) )  =  ( 1  /  2 ) | 
						
							| 13 |  | halflt1 | ⊢ ( 1  /  2 )  <  1 | 
						
							| 14 | 12 13 | eqbrtri | ⊢ ( abs ‘ ( 1  /  2 ) )  <  1 | 
						
							| 15 |  | geoisum1 | ⊢ ( ( ( 1  /  2 )  ∈  ℂ  ∧  ( abs ‘ ( 1  /  2 ) )  <  1 )  →  Σ 𝑘  ∈  ℕ ( ( 1  /  2 ) ↑ 𝑘 )  =  ( ( 1  /  2 )  /  ( 1  −  ( 1  /  2 ) ) ) ) | 
						
							| 16 | 8 14 15 | mp2an | ⊢ Σ 𝑘  ∈  ℕ ( ( 1  /  2 ) ↑ 𝑘 )  =  ( ( 1  /  2 )  /  ( 1  −  ( 1  /  2 ) ) ) | 
						
							| 17 |  | 1mhlfehlf | ⊢ ( 1  −  ( 1  /  2 ) )  =  ( 1  /  2 ) | 
						
							| 18 | 17 | oveq2i | ⊢ ( ( 1  /  2 )  /  ( 1  −  ( 1  /  2 ) ) )  =  ( ( 1  /  2 )  /  ( 1  /  2 ) ) | 
						
							| 19 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 20 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 21 | 19 1 20 3 | divne0i | ⊢ ( 1  /  2 )  ≠  0 | 
						
							| 22 | 8 21 | dividi | ⊢ ( ( 1  /  2 )  /  ( 1  /  2 ) )  =  1 | 
						
							| 23 | 16 18 22 | 3eqtri | ⊢ Σ 𝑘  ∈  ℕ ( ( 1  /  2 ) ↑ 𝑘 )  =  1 | 
						
							| 24 | 7 23 | eqtr3i | ⊢ Σ 𝑘  ∈  ℕ ( 1  /  ( 2 ↑ 𝑘 ) )  =  1 |