Metamath Proof Explorer


Theorem nnz

Description: A positive integer is an integer. (Contributed by NM, 9-May-2004)

Ref Expression
Assertion nnz ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 nnssz ℕ ⊆ ℤ
2 1 sseli ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ )