Metamath Proof Explorer


Theorem elz

Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion elz ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) )

Proof

Step Hyp Ref Expression
1 eqeq1 ( 𝑥 = 𝑁 → ( 𝑥 = 0 ↔ 𝑁 = 0 ) )
2 eleq1 ( 𝑥 = 𝑁 → ( 𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ ) )
3 negeq ( 𝑥 = 𝑁 → - 𝑥 = - 𝑁 )
4 3 eleq1d ( 𝑥 = 𝑁 → ( - 𝑥 ∈ ℕ ↔ - 𝑁 ∈ ℕ ) )
5 1 2 4 3orbi123d ( 𝑥 = 𝑁 → ( ( 𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ - 𝑥 ∈ ℕ ) ↔ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) )
6 df-z ℤ = { 𝑥 ∈ ℝ ∣ ( 𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ - 𝑥 ∈ ℕ ) }
7 5 6 elrab2 ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) )