Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | elz | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 = 0 ↔ 𝑁 = 0 ) ) | |
2 | eleq1 | ⊢ ( 𝑥 = 𝑁 → ( 𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ ) ) | |
3 | negeq | ⊢ ( 𝑥 = 𝑁 → - 𝑥 = - 𝑁 ) | |
4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝑁 → ( - 𝑥 ∈ ℕ ↔ - 𝑁 ∈ ℕ ) ) |
5 | 1 2 4 | 3orbi123d | ⊢ ( 𝑥 = 𝑁 → ( ( 𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ - 𝑥 ∈ ℕ ) ↔ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |
6 | df-z | ⊢ ℤ = { 𝑥 ∈ ℝ ∣ ( 𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ - 𝑥 ∈ ℕ ) } | |
7 | 5 6 | elrab2 | ⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ - 𝑁 ∈ ℕ ) ) ) |