Metamath Proof Explorer


Theorem elz

Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion elz
|- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) )

Proof

Step Hyp Ref Expression
1 eqeq1
 |-  ( x = N -> ( x = 0 <-> N = 0 ) )
2 eleq1
 |-  ( x = N -> ( x e. NN <-> N e. NN ) )
3 negeq
 |-  ( x = N -> -u x = -u N )
4 3 eleq1d
 |-  ( x = N -> ( -u x e. NN <-> -u N e. NN ) )
5 1 2 4 3orbi123d
 |-  ( x = N -> ( ( x = 0 \/ x e. NN \/ -u x e. NN ) <-> ( N = 0 \/ N e. NN \/ -u N e. NN ) ) )
6 df-z
 |-  ZZ = { x e. RR | ( x = 0 \/ x e. NN \/ -u x e. NN ) }
7 5 6 elrab2
 |-  ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) )