Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | elz | |- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 | |- ( x = N -> ( x = 0 <-> N = 0 ) ) |
|
2 | eleq1 | |- ( x = N -> ( x e. NN <-> N e. NN ) ) |
|
3 | negeq | |- ( x = N -> -u x = -u N ) |
|
4 | 3 | eleq1d | |- ( x = N -> ( -u x e. NN <-> -u N e. NN ) ) |
5 | 1 2 4 | 3orbi123d | |- ( x = N -> ( ( x = 0 \/ x e. NN \/ -u x e. NN ) <-> ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
6 | df-z | |- ZZ = { x e. RR | ( x = 0 \/ x e. NN \/ -u x e. NN ) } |
|
7 | 5 6 | elrab2 | |- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |