Metamath Proof Explorer


Theorem nnnegz

Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion nnnegz
|- ( N e. NN -> -u N e. ZZ )

Proof

Step Hyp Ref Expression
1 nnre
 |-  ( N e. NN -> N e. RR )
2 1 renegcld
 |-  ( N e. NN -> -u N e. RR )
3 nncn
 |-  ( N e. NN -> N e. CC )
4 negneg
 |-  ( N e. CC -> -u -u N = N )
5 4 eleq1d
 |-  ( N e. CC -> ( -u -u N e. NN <-> N e. NN ) )
6 5 biimprd
 |-  ( N e. CC -> ( N e. NN -> -u -u N e. NN ) )
7 3 6 mpcom
 |-  ( N e. NN -> -u -u N e. NN )
8 7 3mix3d
 |-  ( N e. NN -> ( -u N = 0 \/ -u N e. NN \/ -u -u N e. NN ) )
9 elz
 |-  ( -u N e. ZZ <-> ( -u N e. RR /\ ( -u N = 0 \/ -u N e. NN \/ -u -u N e. NN ) ) )
10 2 8 9 sylanbrc
 |-  ( N e. NN -> -u N e. ZZ )