Description: A number is equal to the negative of its negative. Theorem I.4 of Apostol p. 18. (Contributed by NM, 12-Jan-2002) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | negneg | |- ( A e. CC -> -u -u A = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg | |- -u -u A = ( 0 - -u A ) |
|
2 | 0cn | |- 0 e. CC |
|
3 | subneg | |- ( ( 0 e. CC /\ A e. CC ) -> ( 0 - -u A ) = ( 0 + A ) ) |
|
4 | 2 3 | mpan | |- ( A e. CC -> ( 0 - -u A ) = ( 0 + A ) ) |
5 | 1 4 | eqtrid | |- ( A e. CC -> -u -u A = ( 0 + A ) ) |
6 | addid2 | |- ( A e. CC -> ( 0 + A ) = A ) |
|
7 | 5 6 | eqtrd | |- ( A e. CC -> -u -u A = A ) |