Metamath Proof Explorer


Theorem negneg

Description: A number is equal to the negative of its negative. Theorem I.4 of Apostol p. 18. (Contributed by NM, 12-Jan-2002) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion negneg
|- ( A e. CC -> -u -u A = A )

Proof

Step Hyp Ref Expression
1 df-neg
 |-  -u -u A = ( 0 - -u A )
2 0cn
 |-  0 e. CC
3 subneg
 |-  ( ( 0 e. CC /\ A e. CC ) -> ( 0 - -u A ) = ( 0 + A ) )
4 2 3 mpan
 |-  ( A e. CC -> ( 0 - -u A ) = ( 0 + A ) )
5 1 4 eqtrid
 |-  ( A e. CC -> -u -u A = ( 0 + A ) )
6 addid2
 |-  ( A e. CC -> ( 0 + A ) = A )
7 5 6 eqtrd
 |-  ( A e. CC -> -u -u A = A )