Metamath Proof Explorer


Theorem nnnegz

Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion nnnegz NN

Proof

Step Hyp Ref Expression
1 nnre NN
2 1 renegcld NN
3 nncn NN
4 negneg N- N=N
5 4 eleq1d N- NN
6 5 biimprd NN- N
7 3 6 mpcom N- N
8 7 3mix3d NN=0N- N
9 elz NNN=0N- N
10 2 8 9 sylanbrc NN