Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
zre
Next ⟩
zcn
Metamath Proof Explorer
Ascii
Unicode
Theorem
zre
Description:
An integer is a real.
(Contributed by
NM
, 8-Jan-2002)
Ref
Expression
Assertion
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
elz
⊢
N
∈
ℤ
↔
N
∈
ℝ
∧
N
=
0
∨
N
∈
ℕ
∨
−
N
∈
ℕ
2
1
simplbi
⊢
N
∈
ℤ
→
N
∈
ℝ