Metamath Proof Explorer


Theorem nnnegz

Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002)

Ref Expression
Assertion nnnegz ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 nnre ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ )
2 1 renegcld ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℝ )
3 nncn ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ )
4 negneg ( 𝑁 ∈ ℂ → - - 𝑁 = 𝑁 )
5 4 eleq1d ( 𝑁 ∈ ℂ → ( - - 𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ ) )
6 5 biimprd ( 𝑁 ∈ ℂ → ( 𝑁 ∈ ℕ → - - 𝑁 ∈ ℕ ) )
7 3 6 mpcom ( 𝑁 ∈ ℕ → - - 𝑁 ∈ ℕ )
8 7 3mix3d ( 𝑁 ∈ ℕ → ( - 𝑁 = 0 ∨ - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ ) )
9 elz ( - 𝑁 ∈ ℤ ↔ ( - 𝑁 ∈ ℝ ∧ ( - 𝑁 = 0 ∨ - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ ) ) )
10 2 8 9 sylanbrc ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ )