Description: The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | nnnegz | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
2 | 1 | renegcld | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℝ ) |
3 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
4 | negneg | ⊢ ( 𝑁 ∈ ℂ → - - 𝑁 = 𝑁 ) | |
5 | 4 | eleq1d | ⊢ ( 𝑁 ∈ ℂ → ( - - 𝑁 ∈ ℕ ↔ 𝑁 ∈ ℕ ) ) |
6 | 5 | biimprd | ⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ∈ ℕ → - - 𝑁 ∈ ℕ ) ) |
7 | 3 6 | mpcom | ⊢ ( 𝑁 ∈ ℕ → - - 𝑁 ∈ ℕ ) |
8 | 7 | 3mix3d | ⊢ ( 𝑁 ∈ ℕ → ( - 𝑁 = 0 ∨ - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ ) ) |
9 | elz | ⊢ ( - 𝑁 ∈ ℤ ↔ ( - 𝑁 ∈ ℝ ∧ ( - 𝑁 = 0 ∨ - 𝑁 ∈ ℕ ∨ - - 𝑁 ∈ ℕ ) ) ) | |
10 | 2 8 9 | sylanbrc | ⊢ ( 𝑁 ∈ ℕ → - 𝑁 ∈ ℤ ) |