| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2cn |  |-  2 e. CC | 
						
							| 2 | 1 | a1i |  |-  ( k e. NN -> 2 e. CC ) | 
						
							| 3 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 4 | 3 | a1i |  |-  ( k e. NN -> 2 =/= 0 ) | 
						
							| 5 |  | nnz |  |-  ( k e. NN -> k e. ZZ ) | 
						
							| 6 | 2 4 5 | exprecd |  |-  ( k e. NN -> ( ( 1 / 2 ) ^ k ) = ( 1 / ( 2 ^ k ) ) ) | 
						
							| 7 | 6 | sumeq2i |  |-  sum_ k e. NN ( ( 1 / 2 ) ^ k ) = sum_ k e. NN ( 1 / ( 2 ^ k ) ) | 
						
							| 8 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 9 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 10 |  | halfge0 |  |-  0 <_ ( 1 / 2 ) | 
						
							| 11 |  | absid |  |-  ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) | 
						
							| 12 | 9 10 11 | mp2an |  |-  ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) | 
						
							| 13 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 14 | 12 13 | eqbrtri |  |-  ( abs ` ( 1 / 2 ) ) < 1 | 
						
							| 15 |  | geoisum1 |  |-  ( ( ( 1 / 2 ) e. CC /\ ( abs ` ( 1 / 2 ) ) < 1 ) -> sum_ k e. NN ( ( 1 / 2 ) ^ k ) = ( ( 1 / 2 ) / ( 1 - ( 1 / 2 ) ) ) ) | 
						
							| 16 | 8 14 15 | mp2an |  |-  sum_ k e. NN ( ( 1 / 2 ) ^ k ) = ( ( 1 / 2 ) / ( 1 - ( 1 / 2 ) ) ) | 
						
							| 17 |  | 1mhlfehlf |  |-  ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) | 
						
							| 18 | 17 | oveq2i |  |-  ( ( 1 / 2 ) / ( 1 - ( 1 / 2 ) ) ) = ( ( 1 / 2 ) / ( 1 / 2 ) ) | 
						
							| 19 |  | ax-1cn |  |-  1 e. CC | 
						
							| 20 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 21 | 19 1 20 3 | divne0i |  |-  ( 1 / 2 ) =/= 0 | 
						
							| 22 | 8 21 | dividi |  |-  ( ( 1 / 2 ) / ( 1 / 2 ) ) = 1 | 
						
							| 23 | 16 18 22 | 3eqtri |  |-  sum_ k e. NN ( ( 1 / 2 ) ^ k ) = 1 | 
						
							| 24 | 7 23 | eqtr3i |  |-  sum_ k e. NN ( 1 / ( 2 ^ k ) ) = 1 |