Metamath Proof Explorer


Theorem halfge0

Description: One-half is not negative. (Contributed by AV, 7-Jun-2020)

Ref Expression
Assertion halfge0
|- 0 <_ ( 1 / 2 )

Proof

Step Hyp Ref Expression
1 0re
 |-  0 e. RR
2 halfre
 |-  ( 1 / 2 ) e. RR
3 halfgt0
 |-  0 < ( 1 / 2 )
4 1 2 3 ltleii
 |-  0 <_ ( 1 / 2 )