| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1cn |  |-  1 e. CC | 
						
							| 2 |  | cnre |  |-  ( 1 e. CC -> E. x e. RR E. y e. RR 1 = ( x + ( _i x. y ) ) ) | 
						
							| 3 |  | ax-rnegex |  |-  ( x e. RR -> E. z e. RR ( x + z ) = 0 ) | 
						
							| 4 |  | readdcl |  |-  ( ( x e. RR /\ z e. RR ) -> ( x + z ) e. RR ) | 
						
							| 5 |  | eleq1 |  |-  ( ( x + z ) = 0 -> ( ( x + z ) e. RR <-> 0 e. RR ) ) | 
						
							| 6 | 4 5 | syl5ibcom |  |-  ( ( x e. RR /\ z e. RR ) -> ( ( x + z ) = 0 -> 0 e. RR ) ) | 
						
							| 7 | 6 | rexlimdva |  |-  ( x e. RR -> ( E. z e. RR ( x + z ) = 0 -> 0 e. RR ) ) | 
						
							| 8 | 3 7 | mpd |  |-  ( x e. RR -> 0 e. RR ) | 
						
							| 9 | 8 | adantr |  |-  ( ( x e. RR /\ E. y e. RR 1 = ( x + ( _i x. y ) ) ) -> 0 e. RR ) | 
						
							| 10 | 9 | rexlimiva |  |-  ( E. x e. RR E. y e. RR 1 = ( x + ( _i x. y ) ) -> 0 e. RR ) | 
						
							| 11 | 1 2 10 | mp2b |  |-  0 e. RR |