Metamath Proof Explorer


Theorem ltleii

Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999)

Ref Expression
Hypotheses lt.1
|- A e. RR
lt.2
|- B e. RR
ltlei.1
|- A < B
Assertion ltleii
|- A <_ B

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 lt.2
 |-  B e. RR
3 ltlei.1
 |-  A < B
4 1 2 ltlei
 |-  ( A < B -> A <_ B )
5 3 4 ax-mp
 |-  A <_ B