Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt.1 | |- A e. RR  | 
					|
| lt.2 | |- B e. RR  | 
					||
| Assertion | ltlei | |- ( A < B -> A <_ B )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lt.1 | |- A e. RR  | 
						|
| 2 | lt.2 | |- B e. RR  | 
						|
| 3 | ltle | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> A <_ B ) )  | 
						|
| 4 | 1 2 3 | mp2an | |- ( A < B -> A <_ B )  |