Metamath Proof Explorer


Theorem ltlei

Description: 'Less than' implies 'less than or equal to'. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion ltlei ( 𝐴 < 𝐵𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 lt.1 𝐴 ∈ ℝ
2 lt.2 𝐵 ∈ ℝ
3 ltle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴𝐵 ) )
4 1 2 3 mp2an ( 𝐴 < 𝐵𝐴𝐵 )