Metamath Proof Explorer


Theorem ltleii

Description: 'Less than' implies 'less than or equal to' (inference). (Contributed by NM, 22-Aug-1999)

Ref Expression
Hypotheses lt.1 A
lt.2 B
ltlei.1 A < B
Assertion ltleii A B

Proof

Step Hyp Ref Expression
1 lt.1 A
2 lt.2 B
3 ltlei.1 A < B
4 1 2 ltlei A < B A B
5 3 4 ax-mp A B