Description: Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | df-le | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cle | |
|
1 | cxr | |
|
2 | 1 1 | cxp | |
3 | clt | |
|
4 | 3 | ccnv | |
5 | 2 4 | cdif | |
6 | 0 5 | wceq | |