Metamath Proof Explorer


Theorem leloe

Description: 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by NM, 13-May-1999)

Ref Expression
Assertion leloe A B A B A < B A = B

Proof

Step Hyp Ref Expression
1 lenlt A B A B ¬ B < A
2 axlttri B A B < A ¬ B = A A < B
3 2 ancoms A B B < A ¬ B = A A < B
4 3 con2bid A B B = A A < B ¬ B < A
5 eqcom B = A A = B
6 5 orbi1i B = A A < B A = B A < B
7 orcom A = B A < B A < B A = B
8 6 7 bitri B = A A < B A < B A = B
9 4 8 bitr3di A B ¬ B < A A < B A = B
10 1 9 bitrd A B A B A < B A = B