Step |
Hyp |
Ref |
Expression |
1 |
|
lenlt |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴 ) ) |
2 |
|
axlttri |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ) ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ¬ ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ) ) |
4 |
3
|
con2bid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ↔ ¬ 𝐵 < 𝐴 ) ) |
5 |
|
eqcom |
⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) |
6 |
5
|
orbi1i |
⊢ ( ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ↔ ( 𝐴 = 𝐵 ∨ 𝐴 < 𝐵 ) ) |
7 |
|
orcom |
⊢ ( ( 𝐴 = 𝐵 ∨ 𝐴 < 𝐵 ) ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) |
8 |
6 7
|
bitri |
⊢ ( ( 𝐵 = 𝐴 ∨ 𝐴 < 𝐵 ) ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) |
9 |
4 8
|
bitr3di |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
10 |
1 9
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |