Metamath Proof Explorer


Theorem lenlt

Description: 'Less than or equal to' expressed in terms of 'less than'. (Contributed by NM, 13-May-1999)

Ref Expression
Assertion lenlt ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
2 rexr ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* )
3 xrlenlt ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )
4 1 2 3 syl2an ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴𝐵 ↔ ¬ 𝐵 < 𝐴 ) )