Metamath Proof Explorer


Theorem ltnle

Description: 'Less than' expressed in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005)

Ref Expression
Assertion ltnle ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 lenlt ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
2 1 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵𝐴 ↔ ¬ 𝐴 < 𝐵 ) )
3 2 con2bid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ 𝐵𝐴 ) )