Metamath Proof Explorer


Theorem axlttri

Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion axlttri ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵𝐵 < 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 ax-pre-lttri ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵𝐵 < 𝐴 ) ) )
2 ltxrlt ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵𝐴 < 𝐵 ) )
3 ltxrlt ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝐵 < 𝐴𝐵 < 𝐴 ) )
4 3 ancoms ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 < 𝐴𝐵 < 𝐴 ) )
5 4 orbi2d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 = 𝐵𝐵 < 𝐴 ) ↔ ( 𝐴 = 𝐵𝐵 < 𝐴 ) ) )
6 5 notbid ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ¬ ( 𝐴 = 𝐵𝐵 < 𝐴 ) ↔ ¬ ( 𝐴 = 𝐵𝐵 < 𝐴 ) ) )
7 1 2 6 3bitr4d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵𝐵 < 𝐴 ) ) )