Metamath Proof Explorer


Theorem eqlelt

Description: Equality in terms of 'less than or equal to', 'less than'. (Contributed by NM, 7-Apr-2001)

Ref Expression
Assertion eqlelt A B A = B A B ¬ A < B

Proof

Step Hyp Ref Expression
1 letri3 A B A = B A B B A
2 lenlt B A B A ¬ A < B
3 2 ancoms A B B A ¬ A < B
4 3 anbi2d A B A B B A A B ¬ A < B
5 1 4 bitrd A B A = B A B ¬ A < B