Metamath Proof Explorer


Theorem letri3

Description: Trichotomy law. (Contributed by NM, 14-May-1999)

Ref Expression
Assertion letri3 A B A = B A B B A

Proof

Step Hyp Ref Expression
1 lttri3 A B A = B ¬ A < B ¬ B < A
2 1 biancomd A B A = B ¬ B < A ¬ A < B
3 lenlt A B A B ¬ B < A
4 lenlt B A B A ¬ A < B
5 4 ancoms A B B A ¬ A < B
6 3 5 anbi12d A B A B B A ¬ B < A ¬ A < B
7 2 6 bitr4d A B A = B A B B A