Database
REAL AND COMPLEX NUMBERS
Derive the basic properties from the field axioms
Ordering on reals
letri3
Next ⟩
leloe
Metamath Proof Explorer
Ascii
Unicode
Theorem
letri3
Description:
Trichotomy law.
(Contributed by
NM
, 14-May-1999)
Ref
Expression
Assertion
letri3
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
=
B
↔
A
≤
B
∧
B
≤
A
Proof
Step
Hyp
Ref
Expression
1
lttri3
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
=
B
↔
¬
A
<
B
∧
¬
B
<
A
2
1
biancomd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
=
B
↔
¬
B
<
A
∧
¬
A
<
B
3
lenlt
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
↔
¬
B
<
A
4
lenlt
⊢
B
∈
ℝ
∧
A
∈
ℝ
→
B
≤
A
↔
¬
A
<
B
5
4
ancoms
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
≤
A
↔
¬
A
<
B
6
3
5
anbi12d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
∧
B
≤
A
↔
¬
B
<
A
∧
¬
A
<
B
7
2
6
bitr4d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
A
=
B
↔
A
≤
B
∧
B
≤
A