Metamath Proof Explorer


Theorem letri3

Description: Trichotomy law. (Contributed by NM, 14-May-1999)

Ref Expression
Assertion letri3 ABA=BABBA

Proof

Step Hyp Ref Expression
1 lttri3 ABA=B¬A<B¬B<A
2 1 biancomd ABA=B¬B<A¬A<B
3 lenlt ABAB¬B<A
4 lenlt BABA¬A<B
5 4 ancoms ABBA¬A<B
6 3 5 anbi12d ABABBA¬B<A¬A<B
7 2 6 bitr4d ABA=BABBA