Metamath Proof Explorer


Theorem lttri3

Description: Trichotomy law for 'less than'. (Contributed by NM, 5-May-1999)

Ref Expression
Assertion lttri3 ABA=B¬A<B¬B<A

Proof

Step Hyp Ref Expression
1 ltso <Or
2 sotrieq2 <OrABA=B¬A<B¬B<A
3 1 2 mpan ABA=B¬A<B¬B<A