Metamath Proof Explorer


Theorem absid

Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion absid
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( A e. RR /\ 0 <_ A ) -> A e. RR )
2 1 recnd
 |-  ( ( A e. RR /\ 0 <_ A ) -> A e. CC )
3 absval
 |-  ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) )
4 2 3 syl
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) )
5 1 cjred
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( * ` A ) = A )
6 5 oveq2d
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( A x. ( * ` A ) ) = ( A x. A ) )
7 2 sqvald
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( A ^ 2 ) = ( A x. A ) )
8 6 7 eqtr4d
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( A x. ( * ` A ) ) = ( A ^ 2 ) )
9 8 fveq2d
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A x. ( * ` A ) ) ) = ( sqrt ` ( A ^ 2 ) ) )
10 sqrtsq
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A ^ 2 ) ) = A )
11 4 9 10 3eqtrd
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A )