Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( x = A -> ( * ` x ) = ( * ` A ) ) |
2 |
|
oveq12 |
|- ( ( x = A /\ ( * ` x ) = ( * ` A ) ) -> ( x x. ( * ` x ) ) = ( A x. ( * ` A ) ) ) |
3 |
1 2
|
mpdan |
|- ( x = A -> ( x x. ( * ` x ) ) = ( A x. ( * ` A ) ) ) |
4 |
3
|
fveq2d |
|- ( x = A -> ( sqrt ` ( x x. ( * ` x ) ) ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
5 |
|
df-abs |
|- abs = ( x e. CC |-> ( sqrt ` ( x x. ( * ` x ) ) ) ) |
6 |
|
fvex |
|- ( sqrt ` ( A x. ( * ` A ) ) ) e. _V |
7 |
4 5 6
|
fvmpt |
|- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |