Metamath Proof Explorer


Theorem fvmpt

Description: Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011)

Ref Expression
Hypotheses fvmptg.1
|- ( x = A -> B = C )
fvmptg.2
|- F = ( x e. D |-> B )
fvmpt.3
|- C e. _V
Assertion fvmpt
|- ( A e. D -> ( F ` A ) = C )

Proof

Step Hyp Ref Expression
1 fvmptg.1
 |-  ( x = A -> B = C )
2 fvmptg.2
 |-  F = ( x e. D |-> B )
3 fvmpt.3
 |-  C e. _V
4 1 2 fvmptg
 |-  ( ( A e. D /\ C e. _V ) -> ( F ` A ) = C )
5 3 4 mpan2
 |-  ( A e. D -> ( F ` A ) = C )