Step |
Hyp |
Ref |
Expression |
1 |
|
fvmptg.1 |
|- ( x = A -> B = C ) |
2 |
|
fvmptg.2 |
|- F = ( x e. D |-> B ) |
3 |
|
eqid |
|- C = C |
4 |
1
|
eqeq2d |
|- ( x = A -> ( y = B <-> y = C ) ) |
5 |
|
eqeq1 |
|- ( y = C -> ( y = C <-> C = C ) ) |
6 |
|
moeq |
|- E* y y = B |
7 |
6
|
a1i |
|- ( x e. D -> E* y y = B ) |
8 |
|
df-mpt |
|- ( x e. D |-> B ) = { <. x , y >. | ( x e. D /\ y = B ) } |
9 |
2 8
|
eqtri |
|- F = { <. x , y >. | ( x e. D /\ y = B ) } |
10 |
4 5 7 9
|
fvopab3ig |
|- ( ( A e. D /\ C e. R ) -> ( C = C -> ( F ` A ) = C ) ) |
11 |
3 10
|
mpi |
|- ( ( A e. D /\ C e. R ) -> ( F ` A ) = C ) |