Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007) (Revised by Mario Carneiro, 31-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fvmptg.1 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
fvmptg.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | ||
Assertion | fvmptg | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvmptg.1 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
2 | fvmptg.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) | |
3 | eqid | ⊢ 𝐶 = 𝐶 | |
4 | 1 | eqeq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 = 𝐵 ↔ 𝑦 = 𝐶 ) ) |
5 | eqeq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 = 𝐶 ↔ 𝐶 = 𝐶 ) ) | |
6 | moeq | ⊢ ∃* 𝑦 𝑦 = 𝐵 | |
7 | 6 | a1i | ⊢ ( 𝑥 ∈ 𝐷 → ∃* 𝑦 𝑦 = 𝐵 ) |
8 | df-mpt | ⊢ ( 𝑥 ∈ 𝐷 ↦ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵 ) } | |
9 | 2 8 | eqtri | ⊢ 𝐹 = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐷 ∧ 𝑦 = 𝐵 ) } |
10 | 4 5 7 9 | fvopab3ig | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ) → ( 𝐶 = 𝐶 → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) ) |
11 | 3 10 | mpi | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐶 ∈ 𝑅 ) → ( 𝐹 ‘ 𝐴 ) = 𝐶 ) |