Metamath Proof Explorer


Theorem fvmpti

Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses fvmptg.1 ( 𝑥 = 𝐴𝐵 = 𝐶 )
fvmptg.2 𝐹 = ( 𝑥𝐷𝐵 )
Assertion fvmpti ( 𝐴𝐷 → ( 𝐹𝐴 ) = ( I ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fvmptg.1 ( 𝑥 = 𝐴𝐵 = 𝐶 )
2 fvmptg.2 𝐹 = ( 𝑥𝐷𝐵 )
3 1 2 fvmptg ( ( 𝐴𝐷𝐶 ∈ V ) → ( 𝐹𝐴 ) = 𝐶 )
4 fvi ( 𝐶 ∈ V → ( I ‘ 𝐶 ) = 𝐶 )
5 4 adantl ( ( 𝐴𝐷𝐶 ∈ V ) → ( I ‘ 𝐶 ) = 𝐶 )
6 3 5 eqtr4d ( ( 𝐴𝐷𝐶 ∈ V ) → ( 𝐹𝐴 ) = ( I ‘ 𝐶 ) )
7 1 eleq1d ( 𝑥 = 𝐴 → ( 𝐵 ∈ V ↔ 𝐶 ∈ V ) )
8 2 dmmpt dom 𝐹 = { 𝑥𝐷𝐵 ∈ V }
9 7 8 elrab2 ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐴𝐷𝐶 ∈ V ) )
10 9 baib ( 𝐴𝐷 → ( 𝐴 ∈ dom 𝐹𝐶 ∈ V ) )
11 10 notbid ( 𝐴𝐷 → ( ¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐶 ∈ V ) )
12 ndmfv ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹𝐴 ) = ∅ )
13 11 12 syl6bir ( 𝐴𝐷 → ( ¬ 𝐶 ∈ V → ( 𝐹𝐴 ) = ∅ ) )
14 13 imp ( ( 𝐴𝐷 ∧ ¬ 𝐶 ∈ V ) → ( 𝐹𝐴 ) = ∅ )
15 fvprc ( ¬ 𝐶 ∈ V → ( I ‘ 𝐶 ) = ∅ )
16 15 adantl ( ( 𝐴𝐷 ∧ ¬ 𝐶 ∈ V ) → ( I ‘ 𝐶 ) = ∅ )
17 14 16 eqtr4d ( ( 𝐴𝐷 ∧ ¬ 𝐶 ∈ V ) → ( 𝐹𝐴 ) = ( I ‘ 𝐶 ) )
18 6 17 pm2.61dan ( 𝐴𝐷 → ( 𝐹𝐴 ) = ( I ‘ 𝐶 ) )