Metamath Proof Explorer


Theorem fvi

Description: The value of the identity function. (Contributed by NM, 1-May-2004) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fvi ( 𝐴𝑉 → ( I ‘ 𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 funi Fun I
2 ididg ( 𝐴𝑉𝐴 I 𝐴 )
3 funbrfv ( Fun I → ( 𝐴 I 𝐴 → ( I ‘ 𝐴 ) = 𝐴 ) )
4 1 2 3 mpsyl ( 𝐴𝑉 → ( I ‘ 𝐴 ) = 𝐴 )