Metamath Proof Explorer


Theorem ndmfv

Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995)

Ref Expression
Assertion ndmfv ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 euex ( ∃! 𝑥 𝐴 𝐹 𝑥 → ∃ 𝑥 𝐴 𝐹 𝑥 )
2 eldmg ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝐹 ↔ ∃ 𝑥 𝐴 𝐹 𝑥 ) )
3 1 2 syl5ibr ( 𝐴 ∈ V → ( ∃! 𝑥 𝐴 𝐹 𝑥𝐴 ∈ dom 𝐹 ) )
4 3 con3d ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ dom 𝐹 → ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ) )
5 tz6.12-2 ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹𝐴 ) = ∅ )
6 4 5 syl6 ( 𝐴 ∈ V → ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹𝐴 ) = ∅ ) )
7 fvprc ( ¬ 𝐴 ∈ V → ( 𝐹𝐴 ) = ∅ )
8 7 a1d ( ¬ 𝐴 ∈ V → ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹𝐴 ) = ∅ ) )
9 6 8 pm2.61i ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹𝐴 ) = ∅ )