Metamath Proof Explorer


Theorem eldmg

Description: Domain membership. Theorem 4 of Suppes p. 59. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Assertion eldmg ( 𝐴𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑥 = 𝐴 → ( 𝑥 𝐵 𝑦𝐴 𝐵 𝑦 ) )
2 1 exbidv ( 𝑥 = 𝐴 → ( ∃ 𝑦 𝑥 𝐵 𝑦 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 ) )
3 df-dm dom 𝐵 = { 𝑥 ∣ ∃ 𝑦 𝑥 𝐵 𝑦 }
4 2 3 elab2g ( 𝐴𝑉 → ( 𝐴 ∈ dom 𝐵 ↔ ∃ 𝑦 𝐴 𝐵 𝑦 ) )