Metamath Proof Explorer


Theorem elab2g

Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995)

Ref Expression
Hypotheses elab2g.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
elab2g.2 𝐵 = { 𝑥𝜑 }
Assertion elab2g ( 𝐴𝑉 → ( 𝐴𝐵𝜓 ) )

Proof

Step Hyp Ref Expression
1 elab2g.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 elab2g.2 𝐵 = { 𝑥𝜑 }
3 2 eleq2i ( 𝐴𝐵𝐴 ∈ { 𝑥𝜑 } )
4 1 elabg ( 𝐴𝑉 → ( 𝐴 ∈ { 𝑥𝜑 } ↔ 𝜓 ) )
5 3 4 syl5bb ( 𝐴𝑉 → ( 𝐴𝐵𝜓 ) )