Metamath Proof Explorer


Theorem elab2g

Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995)

Ref Expression
Hypotheses elab2g.1 x = A φ ψ
elab2g.2 B = x | φ
Assertion elab2g A V A B ψ

Proof

Step Hyp Ref Expression
1 elab2g.1 x = A φ ψ
2 elab2g.2 B = x | φ
3 2 eleq2i A B A x | φ
4 1 elabg A V A x | φ ψ
5 3 4 bitrid A V A B ψ