Metamath Proof Explorer


Theorem ndmfv

Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995)

Ref Expression
Assertion ndmfv ¬ A dom F F A =

Proof

Step Hyp Ref Expression
1 euex ∃! x A F x x A F x
2 eldmg A V A dom F x A F x
3 1 2 syl5ibr A V ∃! x A F x A dom F
4 3 con3d A V ¬ A dom F ¬ ∃! x A F x
5 tz6.12-2 ¬ ∃! x A F x F A =
6 4 5 syl6 A V ¬ A dom F F A =
7 fvprc ¬ A V F A =
8 7 a1d ¬ A V ¬ A dom F F A =
9 6 8 pm2.61i ¬ A dom F F A =