Metamath Proof Explorer


Theorem ndmfv

Description: The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995)

Ref Expression
Assertion ndmfv ¬AdomFFA=

Proof

Step Hyp Ref Expression
1 euex ∃!xAFxxAFx
2 eldmg AVAdomFxAFx
3 1 2 imbitrrid AV∃!xAFxAdomF
4 3 con3d AV¬AdomF¬∃!xAFx
5 tz6.12-2 ¬∃!xAFxFA=
6 4 5 syl6 AV¬AdomFFA=
7 fvprc ¬AVFA=
8 7 a1d ¬AV¬AdomFFA=
9 6 8 pm2.61i ¬AdomFFA=