| Step | Hyp | Ref | Expression | 
						
							| 1 |  | euex |  |-  ( E! x A F x -> E. x A F x ) | 
						
							| 2 |  | eldmg |  |-  ( A e. _V -> ( A e. dom F <-> E. x A F x ) ) | 
						
							| 3 | 1 2 | imbitrrid |  |-  ( A e. _V -> ( E! x A F x -> A e. dom F ) ) | 
						
							| 4 | 3 | con3d |  |-  ( A e. _V -> ( -. A e. dom F -> -. E! x A F x ) ) | 
						
							| 5 |  | tz6.12-2 |  |-  ( -. E! x A F x -> ( F ` A ) = (/) ) | 
						
							| 6 | 4 5 | syl6 |  |-  ( A e. _V -> ( -. A e. dom F -> ( F ` A ) = (/) ) ) | 
						
							| 7 |  | fvprc |  |-  ( -. A e. _V -> ( F ` A ) = (/) ) | 
						
							| 8 | 7 | a1d |  |-  ( -. A e. _V -> ( -. A e. dom F -> ( F ` A ) = (/) ) ) | 
						
							| 9 | 6 8 | pm2.61i |  |-  ( -. A e. dom F -> ( F ` A ) = (/) ) |