Metamath Proof Explorer


Theorem fvprc

Description: A function's value at a proper class is the empty set. See fvprcALT for a proof that uses ax-pow instead of ax-pr . (Contributed by NM, 20-May-1998) Avoid ax-pow . (Revised by BTernaryTau, 3-Aug-2024) (Proof shortened by BTernaryTau, 3-Dec-2024)

Ref Expression
Assertion fvprc ( ¬ 𝐴 ∈ V → ( 𝐹𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 brprcneu ( ¬ 𝐴 ∈ V → ¬ ∃! 𝑥 𝐴 𝐹 𝑥 )
2 tz6.12-2 ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐹𝐴 ) = ∅ )
3 1 2 syl ( ¬ 𝐴 ∈ V → ( 𝐹𝐴 ) = ∅ )