Metamath Proof Explorer


Axiom ax-pow

Description: Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set y exists that includes the power set of a given set x i.e. contains every subset of x . The variant axpow2 uses explicit subset notation. A version using class notation is pwex . (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion ax-pow 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy 𝑦
1 vz 𝑧
2 vw 𝑤
3 2 cv 𝑤
4 1 cv 𝑧
5 3 4 wcel 𝑤𝑧
6 vx 𝑥
7 6 cv 𝑥
8 3 7 wcel 𝑤𝑥
9 5 8 wi ( 𝑤𝑧𝑤𝑥 )
10 9 2 wal 𝑤 ( 𝑤𝑧𝑤𝑥 )
11 0 cv 𝑦
12 4 11 wcel 𝑧𝑦
13 10 12 wi ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 )
14 13 1 wal 𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 )
15 14 0 wex 𝑦𝑧 ( ∀ 𝑤 ( 𝑤𝑧𝑤𝑥 ) → 𝑧𝑦 )