Metamath Proof Explorer


Axiom ax-pow

Description: Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set y exists that includes the power set of a given set x i.e. contains every subset of x . The variant axpow2 uses explicit subset notation. A version using class notation is pwex . (Contributed by NM, 21-Jun-1993)

Ref Expression
Assertion ax-pow
|- E. y A. z ( A. w ( w e. z -> w e. x ) -> z e. y )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy
 |-  y
1 vz
 |-  z
2 vw
 |-  w
3 2 cv
 |-  w
4 1 cv
 |-  z
5 3 4 wcel
 |-  w e. z
6 vx
 |-  x
7 6 cv
 |-  x
8 3 7 wcel
 |-  w e. x
9 5 8 wi
 |-  ( w e. z -> w e. x )
10 9 2 wal
 |-  A. w ( w e. z -> w e. x )
11 0 cv
 |-  y
12 4 11 wcel
 |-  z e. y
13 10 12 wi
 |-  ( A. w ( w e. z -> w e. x ) -> z e. y )
14 13 1 wal
 |-  A. z ( A. w ( w e. z -> w e. x ) -> z e. y )
15 14 0 wex
 |-  E. y A. z ( A. w ( w e. z -> w e. x ) -> z e. y )