Description: Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set y exists that includes the power set of a given set x i.e. contains every subset of x . The variant axpow2 uses explicit subset notation. A version using class notation is pwex . (Contributed by NM, 21-Jun-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-pow | |- E. y A. z ( A. w ( w e. z -> w e. x ) -> z e. y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vy | |- y |
|
1 | vz | |- z |
|
2 | vw | |- w |
|
3 | 2 | cv | |- w |
4 | 1 | cv | |- z |
5 | 3 4 | wcel | |- w e. z |
6 | vx | |- x |
|
7 | 6 | cv | |- x |
8 | 3 7 | wcel | |- w e. x |
9 | 5 8 | wi | |- ( w e. z -> w e. x ) |
10 | 9 2 | wal | |- A. w ( w e. z -> w e. x ) |
11 | 0 | cv | |- y |
12 | 4 11 | wcel | |- z e. y |
13 | 10 12 | wi | |- ( A. w ( w e. z -> w e. x ) -> z e. y ) |
14 | 13 1 | wal | |- A. z ( A. w ( w e. z -> w e. x ) -> z e. y ) |
15 | 14 0 | wex | |- E. y A. z ( A. w ( w e. z -> w e. x ) -> z e. y ) |