Metamath Proof Explorer


Theorem fvmptg

Description: Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses fvmptg.1 x = A B = C
fvmptg.2 F = x D B
Assertion fvmptg A D C R F A = C

Proof

Step Hyp Ref Expression
1 fvmptg.1 x = A B = C
2 fvmptg.2 F = x D B
3 eqid C = C
4 1 eqeq2d x = A y = B y = C
5 eqeq1 y = C y = C C = C
6 moeq * y y = B
7 6 a1i x D * y y = B
8 df-mpt x D B = x y | x D y = B
9 2 8 eqtri F = x y | x D y = B
10 4 5 7 9 fvopab3ig A D C R C = C F A = C
11 3 10 mpi A D C R F A = C