Metamath Proof Explorer


Theorem 2cn

Description: The number 2 is a complex number. (Contributed by NM, 30-Jul-2004) Reduce dependencies on axioms. (Revised by Steven Nguyen, 4-Oct-2022)

Ref Expression
Assertion 2cn
|- 2 e. CC

Proof

Step Hyp Ref Expression
1 df-2
 |-  2 = ( 1 + 1 )
2 ax-1cn
 |-  1 e. CC
3 2 2 addcli
 |-  ( 1 + 1 ) e. CC
4 1 3 eqeltri
 |-  2 e. CC