Metamath Proof Explorer


Theorem 2ne0

Description: The number 2 is nonzero. (Contributed by NM, 9-Nov-2007)

Ref Expression
Assertion 2ne0 2 ≠ 0

Proof

Step Hyp Ref Expression
1 2re 2 ∈ ℝ
2 2pos 0 < 2
3 1 2 gt0ne0ii 2 ≠ 0