Metamath Proof Explorer


Theorem 0.999...

Description: The recurring decimal 0.999..., which is defined as the infinite sum 0.9 + 0.09 + 0.009 + ... i.e. 9 / 1 0 ^ 1 + 9 / 1 0 ^ 2 + 9 / 1 0 ^ 3 + ... , is exactly equal to 1, according to ZF set theory. Interestingly, about 40% of the people responding to a poll at http://forum.physorg.com/index.php?showtopic=13177 disagree. (Contributed by NM, 2-Nov-2007) (Revised by AV, 8-Sep-2021)

Ref Expression
Assertion 0.999... k910k=1

Proof

Step Hyp Ref Expression
1 9cn 9
2 10re 10
3 2 recni 10
4 nnnn0 kk0
5 expcl 10k010k
6 3 4 5 sylancr k10k
7 3 a1i k10
8 10pos 0<10
9 2 8 gt0ne0ii 100
10 9 a1i k100
11 nnz kk
12 7 10 11 expne0d k10k0
13 divrec 910k10k0910k=9110k
14 1 6 12 13 mp3an2i k910k=9110k
15 7 10 11 exprecd k110k=110k
16 15 oveq2d k9110k=9110k
17 14 16 eqtr4d k910k=9110k
18 17 sumeq2i k910k=k9110k
19 2 9 rereccli 110
20 19 recni 110
21 0re 0
22 2 8 recgt0ii 0<110
23 21 19 22 ltleii 0110
24 19 absidi 0110110=110
25 23 24 ax-mp 110=110
26 1lt10 1<10
27 recgt1 100<101<10110<1
28 2 8 27 mp2an 1<10110<1
29 26 28 mpbi 110<1
30 25 29 eqbrtri 110<1
31 geoisum1c 9110110<1k9110k=91101110
32 1 20 30 31 mp3an k9110k=91101110
33 1 3 9 divreci 910=9110
34 1 3 9 divcan2i 10910=9
35 ax-1cn 1
36 3 35 20 subdii 101110=10110110
37 3 mulridi 101=10
38 3 9 recidi 10110=1
39 37 38 oveq12i 10110110=101
40 10m1e9 101=9
41 36 39 40 3eqtrri 9=101110
42 34 41 eqtri 10910=101110
43 9re 9
44 43 2 9 redivcli 910
45 44 recni 910
46 35 20 subcli 1110
47 45 46 3 9 mulcani 10910=101110910=1110
48 42 47 mpbi 910=1110
49 33 48 oveq12i 910910=91101110
50 9pos 0<9
51 43 2 50 8 divgt0ii 0<910
52 44 51 gt0ne0ii 9100
53 45 52 dividi 910910=1
54 32 49 53 3eqtr2i k9110k=1
55 18 54 eqtri k910k=1