Description: The infinite sum of A x. ( R ^ 1 ) + A x. ( R ^ 2 ) ... is ( A x. R ) / ( 1 - R ) . (Contributed by NM, 2-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | geoisum1c | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | simp2 | |
|
3 | ax-1cn | |
|
4 | subcl | |
|
5 | 3 2 4 | sylancr | |
6 | simp3 | |
|
7 | 1re | |
|
8 | 7 | ltnri | |
9 | abs1 | |
|
10 | fveq2 | |
|
11 | 9 10 | eqtr3id | |
12 | 11 | breq1d | |
13 | 8 12 | mtbii | |
14 | 13 | necon2ai | |
15 | 6 14 | syl | |
16 | subeq0 | |
|
17 | 16 | necon3bid | |
18 | 3 2 17 | sylancr | |
19 | 15 18 | mpbird | |
20 | 1 2 5 19 | divassd | |
21 | geoisum1 | |
|
22 | 21 | 3adant1 | |
23 | 22 | oveq2d | |
24 | nnuz | |
|
25 | 1zzd | |
|
26 | oveq2 | |
|
27 | eqid | |
|
28 | ovex | |
|
29 | 26 27 28 | fvmpt | |
30 | 29 | adantl | |
31 | nnnn0 | |
|
32 | expcl | |
|
33 | 2 31 32 | syl2an | |
34 | 1nn0 | |
|
35 | 34 | a1i | |
36 | elnnuz | |
|
37 | 36 30 | sylan2br | |
38 | 2 6 35 37 | geolim2 | |
39 | seqex | |
|
40 | ovex | |
|
41 | 39 40 | breldm | |
42 | 38 41 | syl | |
43 | 24 25 30 33 42 1 | isummulc2 | |
44 | 20 23 43 | 3eqtr2rd | |