Metamath Proof Explorer


Theorem geoisum1c

Description: The infinite sum of A x. ( R ^ 1 ) + A x. ( R ^ 2 ) ... is ( A x. R ) / ( 1 - R ) . (Contributed by NM, 2-Nov-2007) (Revised by Mario Carneiro, 26-Apr-2014)

Ref Expression
Assertion geoisum1c ARR<1kARk=AR1R

Proof

Step Hyp Ref Expression
1 simp1 ARR<1A
2 simp2 ARR<1R
3 ax-1cn 1
4 subcl 1R1R
5 3 2 4 sylancr ARR<11R
6 simp3 ARR<1R<1
7 1re 1
8 7 ltnri ¬1<1
9 abs1 1=1
10 fveq2 1=R1=R
11 9 10 eqtr3id 1=R1=R
12 11 breq1d 1=R1<1R<1
13 8 12 mtbii 1=R¬R<1
14 13 necon2ai R<11R
15 6 14 syl ARR<11R
16 subeq0 1R1R=01=R
17 16 necon3bid 1R1R01R
18 3 2 17 sylancr ARR<11R01R
19 15 18 mpbird ARR<11R0
20 1 2 5 19 divassd ARR<1AR1R=AR1R
21 geoisum1 RR<1kRk=R1R
22 21 3adant1 ARR<1kRk=R1R
23 22 oveq2d ARR<1AkRk=AR1R
24 nnuz =1
25 1zzd ARR<11
26 oveq2 n=kRn=Rk
27 eqid nRn=nRn
28 ovex RkV
29 26 27 28 fvmpt knRnk=Rk
30 29 adantl ARR<1knRnk=Rk
31 nnnn0 kk0
32 expcl Rk0Rk
33 2 31 32 syl2an ARR<1kRk
34 1nn0 10
35 34 a1i ARR<110
36 elnnuz kk1
37 36 30 sylan2br ARR<1k1nRnk=Rk
38 2 6 35 37 geolim2 ARR<1seq1+nRnR11R
39 seqex seq1+nRnV
40 ovex R11RV
41 39 40 breldm seq1+nRnR11Rseq1+nRndom
42 38 41 syl ARR<1seq1+nRndom
43 24 25 30 33 42 1 isummulc2 ARR<1AkRk=kARk
44 20 23 43 3eqtr2rd ARR<1kARk=AR1R