| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> A e. CC ) |
| 2 |
|
simp2 |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> R e. CC ) |
| 3 |
|
ax-1cn |
|- 1 e. CC |
| 4 |
|
subcl |
|- ( ( 1 e. CC /\ R e. CC ) -> ( 1 - R ) e. CC ) |
| 5 |
3 2 4
|
sylancr |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( 1 - R ) e. CC ) |
| 6 |
|
simp3 |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( abs ` R ) < 1 ) |
| 7 |
|
1re |
|- 1 e. RR |
| 8 |
7
|
ltnri |
|- -. 1 < 1 |
| 9 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 10 |
|
fveq2 |
|- ( 1 = R -> ( abs ` 1 ) = ( abs ` R ) ) |
| 11 |
9 10
|
eqtr3id |
|- ( 1 = R -> 1 = ( abs ` R ) ) |
| 12 |
11
|
breq1d |
|- ( 1 = R -> ( 1 < 1 <-> ( abs ` R ) < 1 ) ) |
| 13 |
8 12
|
mtbii |
|- ( 1 = R -> -. ( abs ` R ) < 1 ) |
| 14 |
13
|
necon2ai |
|- ( ( abs ` R ) < 1 -> 1 =/= R ) |
| 15 |
6 14
|
syl |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> 1 =/= R ) |
| 16 |
|
subeq0 |
|- ( ( 1 e. CC /\ R e. CC ) -> ( ( 1 - R ) = 0 <-> 1 = R ) ) |
| 17 |
16
|
necon3bid |
|- ( ( 1 e. CC /\ R e. CC ) -> ( ( 1 - R ) =/= 0 <-> 1 =/= R ) ) |
| 18 |
3 2 17
|
sylancr |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( ( 1 - R ) =/= 0 <-> 1 =/= R ) ) |
| 19 |
15 18
|
mpbird |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( 1 - R ) =/= 0 ) |
| 20 |
1 2 5 19
|
divassd |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( ( A x. R ) / ( 1 - R ) ) = ( A x. ( R / ( 1 - R ) ) ) ) |
| 21 |
|
geoisum1 |
|- ( ( R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( R ^ k ) = ( R / ( 1 - R ) ) ) |
| 22 |
21
|
3adant1 |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( R ^ k ) = ( R / ( 1 - R ) ) ) |
| 23 |
22
|
oveq2d |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( A x. sum_ k e. NN ( R ^ k ) ) = ( A x. ( R / ( 1 - R ) ) ) ) |
| 24 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 25 |
|
1zzd |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> 1 e. ZZ ) |
| 26 |
|
oveq2 |
|- ( n = k -> ( R ^ n ) = ( R ^ k ) ) |
| 27 |
|
eqid |
|- ( n e. NN |-> ( R ^ n ) ) = ( n e. NN |-> ( R ^ n ) ) |
| 28 |
|
ovex |
|- ( R ^ k ) e. _V |
| 29 |
26 27 28
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( R ^ n ) ) ` k ) = ( R ^ k ) ) |
| 30 |
29
|
adantl |
|- ( ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( R ^ n ) ) ` k ) = ( R ^ k ) ) |
| 31 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 32 |
|
expcl |
|- ( ( R e. CC /\ k e. NN0 ) -> ( R ^ k ) e. CC ) |
| 33 |
2 31 32
|
syl2an |
|- ( ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) /\ k e. NN ) -> ( R ^ k ) e. CC ) |
| 34 |
|
1nn0 |
|- 1 e. NN0 |
| 35 |
34
|
a1i |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> 1 e. NN0 ) |
| 36 |
|
elnnuz |
|- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
| 37 |
36 30
|
sylan2br |
|- ( ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) /\ k e. ( ZZ>= ` 1 ) ) -> ( ( n e. NN |-> ( R ^ n ) ) ` k ) = ( R ^ k ) ) |
| 38 |
2 6 35 37
|
geolim2 |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) ~~> ( ( R ^ 1 ) / ( 1 - R ) ) ) |
| 39 |
|
seqex |
|- seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) e. _V |
| 40 |
|
ovex |
|- ( ( R ^ 1 ) / ( 1 - R ) ) e. _V |
| 41 |
39 40
|
breldm |
|- ( seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) ~~> ( ( R ^ 1 ) / ( 1 - R ) ) -> seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) e. dom ~~> ) |
| 42 |
38 41
|
syl |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) e. dom ~~> ) |
| 43 |
24 25 30 33 42 1
|
isummulc2 |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( A x. sum_ k e. NN ( R ^ k ) ) = sum_ k e. NN ( A x. ( R ^ k ) ) ) |
| 44 |
20 23 43
|
3eqtr2rd |
|- ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( A x. ( R ^ k ) ) = ( ( A x. R ) / ( 1 - R ) ) ) |