Metamath Proof Explorer


Definition df-clim

Description: Define the limit relation for complex number sequences. See clim for its relational expression. (Contributed by NM, 28-Aug-2005)

Ref Expression
Assertion df-clim =fy|yx+jkjfkfky<x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cli class
1 vf setvarf
2 vy setvary
3 2 cv setvary
4 cc class
5 3 4 wcel wffy
6 vx setvarx
7 crp class+
8 vj setvarj
9 cz class
10 vk setvark
11 cuz class
12 8 cv setvarj
13 12 11 cfv classj
14 1 cv setvarf
15 10 cv setvark
16 15 14 cfv classfk
17 16 4 wcel wfffk
18 cabs classabs
19 cmin class
20 16 3 19 co classfky
21 20 18 cfv classfky
22 clt class<
23 6 cv setvarx
24 21 23 22 wbr wfffky<x
25 17 24 wa wfffkfky<x
26 25 10 13 wral wffkjfkfky<x
27 26 8 9 wrex wffjkjfkfky<x
28 27 6 7 wral wffx+jkjfkfky<x
29 5 28 wa wffyx+jkjfkfky<x
30 29 1 2 copab classfy|yx+jkjfkfky<x
31 0 30 wceq wff=fy|yx+jkjfkfky<x