Metamath Proof Explorer


Theorem subcl

Description: Closure law for subtraction. (Contributed by NM, 10-May-1999) (Revised by Mario Carneiro, 21-Dec-2013)

Ref Expression
Assertion subcl ABAB

Proof

Step Hyp Ref Expression
1 subval ABAB=ιx|B+x=A
2 negeu BA∃!xB+x=A
3 2 ancoms AB∃!xB+x=A
4 riotacl ∃!xB+x=Aιx|B+x=A
5 3 4 syl ABιx|B+x=A
6 1 5 eqeltrd ABAB